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effect of a concentrated force along the interface, it again becomes elementary. 
In conclusion, let us note the possibility of applying the method to solve the same 

problems for media with a more general kind of anisotropy, 
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The problem of sresses transmitted through a stiffening rib in a plate is usually examined 
under various simplifying assumptions (see e. g. [l- 51). 

A sufficiently simple method is proposed below for effective construction of solutions 

for problems of this type. This approach based on known methods of solution of planar 
problems permits to construct the solution in finite form. 

The solution is found in integrals of the Cauchy type. The density of these integrals 
is determined by means of Fourier transformation. 

1, The method of solution will be presented using as an example an elastic half-plane 

reinforced by a semi-infinite straight stringer (stiffening rib) continuously attached to the 
plane along the boundary, 

We shall assume that the stresses (in the plate and in the stringer) are produced by only 
one axial force applied at the end of the srringer, 

We locate the plate in the lower half-plane of the pIane of the complex variable 
a = z + iy and let the stringer coincide with the positive part of the real axis, One end 
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of the stringer will be at the origin of coordinates, the other will extend to infinity. 
Let E and Y be the elastic constants of the plate, Ea the modulus of elasticity of the 

rod, h the thickness of the plate. S, the cross section of the rod, assumed to be constant. 

The magnitude of the external force applied at the end of the rod and directed along 
the Z.-axis is designated through JJ,, .The remaining notations used below are commonly 
accepted. 

The part of the boundary to the left of the origin of coordinates is by definition not 
stressed. Therefore the boundary conditions will be 

ov = zxt# = 0, s<O (1.1) 

The bounda~,conditions on the remain~g part of the boundary where the plate is 
connected to the stringer will consist of conditions of equilibrium of any part (0, 5) of 

the latter. These conditions are given by the following two equations: 

pe--h[ ?Xy dt + kc&== 0 

32 0 
(1.2) 

-h tsydt=O, 
s 

x>o; 
EoSo kzz- 

E 
0 

These two equations together give 

PO-$& +fay)dt+ka,=O (230) (1.3) 

We shall take advantage of the well known formulations of K~lov-Muskhe~ishvili [6] 

a,+ ov = 219 (2) + CP’OJ (1.4) 

ou - ox+ 2irzy= 2Ecp” (2) + q’ @)I 

and the equation of Muskhelishvili (same reference) 
t 

-i (7wy+iaY)dz=(P(t)+t(pl(t)+~(t)const 
s 
0 

(1.5) 

On the basis of these equations the boundary conditions (1.1) and (1.3) of the problem 
under examination are written in the following form after omission of insignificant con- 

stants : 
~(~)+~~+~~=o ft < 0) (W 

ip0 +h h (4 + 43 Il(Ql + (1.7) 

+ikRe[$ (t) f-(t) - tcp”t) -_)I = 0 (t > 0) 

According to the physical meaning of the problem it is completely clear that the 
stresses will not be bounded in the closed half-plane. At the point z = 0 where the load 
acts on the plate through the stringer the stresses can go to infinity of the order lower 
than unity. For large 1 z \ the stresses will be vanishingly small in view of the absence 
of external stresses in the infinitely elongated parts of the medium. 

Let us compute the principal vector of external stresses applied to the boundary of 

the half-plane. On the basis of (1.1) and (1.2) we have 
co m 

x’= 
5 

z,v dt = F, Y= 
s 

cs%dt =0 (1.8) 

-aI -cm 
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The presence of a principal vector different from zero has, according to expressions 

of M~khe~shvili, as a consequence the unboundedness of complex potentials ‘p (z) and 

111 (a) at infinity. For large 1 z [ the potentials will have the form ( ES]. p, 346) 

cp(~)=-$N-~a(r), Q(z)=gInz+%(z) (1.9) 

where rpo (z) and $. (z) are functions holomorphic in the half-plane, which permit the 
asymptotic representation 

‘PO (z) = 0 (1) + const, go (2) = 0 (1) + const (1.10) 

In accordance with the assumption about the character of stresses in the vicinity of 

the point z = 0, the boundary values of function cp’ (z) can allow at this point a singu- 
larity of the order lower than unity, 

Together with the lower half-plane, which we now designate by S-, we also introduce 
into the analysis the upper half-plane Imz > 0, to be designated below by S+. Following 
Muskhelishvili [S], we extend the determination of function g, (z) to the upper half-plane, 
assuming that 

(P(a) = -z$ (2) -q(z) for 2 in Sr (1.11) 

On the basis of the boundary value (1.6) it is easy to infer that function (1. ll), which 
is holomorphic in S+, analytically extends the values of the complex potential 4, (z) 
from S- through the pole (-m, 0). 

The function determined in this manner which we again designate through cp (2) will 
be piecewise holomorphic in the region S which represents the entire plane z bisected 

along the half-axis (0, m). Through this function the function Cp (z) can be expressed 
from (1.11) in the following form : 

9 (4 = -4z) - 2$(z) for 2 in S- (i.12) 

Equations (1.11) and (1.~12) allow the assertion that expression (1.9) is also valid for 
a piecewise holomorphic function ‘p (2). 

In the examination of the plane which is bisected along the positive part of the real 

axis we shall distinguish between the upper and lower edge of the cut and will assign to 
values related to these edges the signs plus and minus, respectively. 

Functions 9 (t) and $’ (t) (more correctly $- (t) and $‘- (b)) in boundary conditions 

(1.6) and (1.7) are replaced by their values (1.12). Then these conditions take the form 

cp- (0 - $J+ (t) = 9, t<o (1.13) 

ip, + k [cp- (t) - rpf (t)] + ikRe/$+ (t) + 3rp’- (1)l = 0, t > 0 

To solve this problem, we write in region S 
M ._ 

(P(~)=-&lnz+~o(Z), 
1 

s 

o(t) dt 
‘pow=Zni z__z 

0 

(f.14) 

Here o (r) = n (r) + iv (‘t) is a new unknown function on 10, x), while In I is un- 
derstood to be a definite branch of this function which assumes, let us say, positive values 

on the upper edge of the cut. 
With respect to function o (3 we shall assume that it together with its derivative of 

the first order satisfies l-loelder’s condition on any finite section which does not have as 
its end r = 0. We shall also assume that o (z) belongs to the class L, (0, m) fo; some 
P > 1, and o’ (t) to the class L (0, 00). As a result we have 
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Co 

o(O) cFd(z)=--+& - s 0’ (7) dz 
z-z 

0 

m 

Po+(l)=&(t)+~S * 
0 

(1.15) 

If the preceding expressions for the boundary values of function r+ (z) and of its deri- 
vative are substituted into (1.13) and if it is taken into account here that 

cp-(t)-q+(t)=--o(t)- ~[In-t-In+(t)]=--t-iX=-w(t)-_ 

then we obtain 

ho (t) + ik 
2 IX + y (O)l 

ret + P’ (4 - 
pgJg$}=, (1.16) 

0 

Let us try to determine the quantity Y (0). According to (1.4) we have 

%t - = Im {@“- (t) + $- (t)} 

If the function $‘- (t) is replaced here by its expression from (1.12), then the first part 
of the equation takes on the form 

Im {tcp”- (t) + $‘- (t)) = -Im{cp’+) + q’-(t)] 

For limit values of function cp’ (z) in the preceding equation we take advantage of 

Eqs. (1.15) of Sakhotskii-Plemel. As a result we obtain 

rxu - = v’ (t) (1.17) 

Let us turn now to the first equation (1.2). By virtue of (1.17) it assumes the form 

PO - h [v (r) - v @)I + Im, = 0 (x > 0) 

Here the transition to the limit for 5 3 00 determines Y (0) in the following form: 

Y (0) = - 9 (1.18) 

We note now that in view of (1.8) and (1.18) the first term in braces in (1.16) drops 
out. After separation of real and imaginary parts, Eq. (1.16) is presented in the form of 

two equations 
?/ 

p(t) = 0, v (t) - -jy s 

v’ (r) dt 2k 
-=O 

T---t ( 
2EoSo ’ 

h==h= Eh 
! 

(1.19) 

0 . 
In this manner a homogeneous integro-differential equation (1.19) is obtained for the 

determination of density of integral (1.14) under the condition (1.18). 

Note. Equation (1.19) can be easily be given the form of an inhomogeneous singu- 

lar integral equation. In fact, it follows from Eqs. (1.17) and (1.18) that: 

v (t) = s T,.~- dz - 9 
0 

Substituting these expressions together with (1.17) into (i. 19). we Find 

(1.20) 

Equation (1.20) was obtained from other considerations in the work of Koiter [4]. 
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2, Let us try to apply the Wiener-Hopf technique to solution of (1.19). Together with 
(1.19) we introduce the following integro-differential equation into consideration : 

co 

g(t)--- p s g’ (z) & - = b(t), T-t -ca<x<30 

with the additional condition 

In this connection 
g (9) = (2 (a = --P@(h) (2.2) 

Q) 

b(t)=0 for t>,o, I=--$ s * for t <o (2.3) 

If the derivative of the function 
-03 

t>0 

r<o 
(2.4) 

where Y (t) is the solution of Eq. (1.19) with the required properties, was summable on 

the axis, then equations (1.19) and (2.1) would be equivalent among themselves. The 

derivative g’ (t). however, as follows from definition (2.4), represents the sum of an inte- 
grable function and a function of the type 6 (t). Therefore, in order to obtain the requi- 

red solution Y (t) of Eq. (1.19) from (2. l), the assumption of summabili~ of the deri- 

vative of solution (2.1) should be relinquished and all necessary operations on this solu- 
tion should be carried out in a purely formal manner. 

In the following we take advantage of Fourier transformation. Let us agree to denote 
the functions by small letters and their Fourier transforms by the same capital letters. 

On the basis of (2.1)-(2.3) we have 

g’ (7) P & = $’ g (‘c) 1: - it $ g(z) 8’ dt = - a - itG (t) (2.5) 
_.& 

In addition 1 ~ ,ixt dX 
-z I x---z 

= i sig teiEr P.f3) 

-co 

Performing the Fourier ~ansformation on both parts of Eq. (2.1) and taking into account 

(2.5) and (2.6). we have C (t) - ih [a + itC (t)]sigt = B (t) (-cc < x <co) 

By virtue of their definition functions G (t) and B (t) will be the limiting values of 
functions G (t) and B (4, which are actually holomorphic in Sf and S-. respectively. 
Therefore the previous equation can also be written as follows: 

G+ (t) [I + Al t ) ] = B- (t) + iha sip t (---DC <t-cm) (2.7) 

In this manner,for the determination of the desired Fourier transform C (t) of solution 

(2.l),the problem of linear conjugation on the axis is obtained. 
In the case of G+ (t) in (2.7) we represent the coefficient in the form 

- - 
l+hltl= .$g 61 +iAt j/l-i&t 

and bring into consideration the canonic solution X (z) of the auxiliary problem of lin- 
ear conjugation 

Xf (t) = ;:;” ;tty - x-(t) (--OC<t<M) (24 

The following function can be taken as X (z) : 
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co 

X(z)=exp & 
[ s _mln ;s & 1 (2.9) 

It is easy to verify that X (2) satisfies the boundary condition (2.8), does not become 
zero anywhere, including the real axis, and for 1 z i -, 00 in closed half-planes is : 

x* (x) = : (2.10) 

Now let us represent the boundary condition (2.7) in the form 

G+(t$ 61 - lhtX+ (t) = 
B-(t) X- (t) &2X-(t)sig t 

- 
l/l+iht + JKjXLt 

(2.ii) 

From this it follows directly that: 

1/1--X(z)G(z)= ~_~~;_m& for z in S+ 

or on the basis of well-known Cauchy theorem 

for 2 in S+ (2.12) 

Let us now determine the transformation of the Fourier function g’ (t). Let us desig- 
nate it by G1 (r) and note that values of this function represent boundary values G1+ (t) 
of the function holomorphic with respect to z in S +. Having taken this into account we 
rewrite Eq. (2.5) in the equivalent form 

G1 (z) = --a - iz.G (z) (2.13) 
Substituting into this G (z) from (2.12). we find 

co 
haz 

Gl(z) = - a + vi _ ihzX (z,+i s x-(t) dt 

fcjxi t--z 
0 

(2.14) 

Let us compute the limit of function G1(z)rwhen the point moves out to infinity remain- 
ing all the time in the upper half-plane. To facilitate computation a substitution of 
variable z is performed in (2.14). The variable of integration is also changed 

z= --i/C, t= --I/z (2.15) 

Through transformation (2.15) the upper half-plane of plane z becomes the upper 
half-plane of the plane 6, the real axis transforms into the real axis and the region ofthe 
point at infinity becomes the region of point 5 = 0. In this connection Eq. (2.14) trans- 

forms into the form 

Gr* (5) + a = - (2.16) 

GI* (6) = GI (4, x* (6) = x (4 
For evaluation of (2.16) in the case of small 15 1 we take advantage of the equation 

of Muskhelishvili which characterizes the behavior of an integral of the Cauchy type 
near the ends of the line of integration ( [7], p. 78, Eq. (29.5)). We also use the limit 
equation (2.10). For points 5 in the vicinity of the origin of coordinates on the bisected 
plane the following equation is valid : 

Gi* (5) + a = --a + 0 (1) (2.17) 

Returning from this to (2.14)we conclude that the function Go (z) holomorphic in S+, 

which is determinable by the equation 
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(2.28) 

vanishes at infinity. Its boundary values G “+ (t) wil! represent the Fourier transform of 
the desired function v’ (t) 

! O” 
v’ (t) = 2Jc 

s 
Co+(z) e-itt dz (2.19) 

-co 

The preceding expression determines according to Eqs. (1.14) a piecewise holomor- 
phic function cp (z) which satisfies all requirements of the problem. 

The author is very grateful to G. A. Dzhanashiia and R. D. Bantsuri for useful discussions 
of the content of this section. 

The problem of internal semi-infinite stringer in an unbounded plate is solved in an 
analogous manner [3, 41. 
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The problem of the development of cavities in viscous bodies under infinite deforma- 
tions is considered. A formation of the problem of the development of a cavity under 
the conditions of a stationary slow flow of a viscous Newtonian fluid is given in Sect. 1. 
An exact solution of the problem of broadening of the cavity from the initial viscous 
one is obtained in Sect. 2. The analysis is limited to the case of the plane problem. 

1. Vi~cour body. Let us consider a viscous body subjected to Newton’s law and 
occupying an infinite domain in the exterior of some contour-L.(the problem is considered 
a plane one). The interior of the contour L is some cavity whose shape is known only at 


